ASTM D4052 – Standard Test Method for Density, Relative Density, and API Gravity of Liquids by Digital Density Meter
Significance and Use
5.1Â Density is a fundamental physical property that can be used in conjunction with other properties to characterize both the light and heavy fractions of petroleum and petroleum products.
5.2 Determination of the density or relative density of petroleum and its products is necessary for the conversion of measured volumes to volumes at the standard temperature of 15 °C.
Scope
1.1 This test method covers the determination of the density, relative density, and API Gravity of petroleum distillates and viscous oils that can be handled in a normal fashion as liquids at the temperature of test, utilizing either manual or automated sample injection equipment. Its application is restricted to liquids with total vapor pressures (see Test Method D5191) typically below 100 kPa and viscosities (see Test Method D445 or D7042) typically below about 15 000 mm2/s at the temperature of test. The total vapor pressure limitation however can be extended to >100 kPa provided that it is first ascertained that no bubbles form in the U-tube, which can affect the density determination. Some examples of products that may be tested by this procedure include: gasoline and gasoline-oxygenate blends, diesel, jet, basestocks, waxes, and lubricating oils.
1.1.1 Waxes and highly viscous samples were not included in the 1999 interlaboratory study (ILS) sample set that was used to determine the current precision statements of the method, since all samples evaluated at the time were analyzed at a test temperature of 15 °C. Wax and highly viscous samples require a temperature cell operated at elevated temperatures necessary to ensure a liquid test specimen is introduced for analysis. Consult instrument manufacturer instructions for appropriate guidance and precautions when attempting to analyze wax or highly viscous samples. Refer to the Precision and Bias section of the method and Note 9 for more detailed information about the 1999 ILS that was conducted.
1.2 In cases of dispute, the referee method is the one where samples are introduced manually as in 6.2 or 6.3, as appropriate for sample type.
1.3 When testing opaque samples, and when not using equipment that is capable of automatic bubble detection, proper procedure shall be established so that the absence of air bubbles in the U-tube can be established with certainty. For the determination of density in crude oil samples use Test Method D5002.
1.4Â The values stated in SI units are regarded as the standard, unless stated otherwise. The accepted units of measure for density are grams per millilitre (g/mL) or kilograms per cubic metre (kg/m3).
1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. For specific warning statements, see 3.2.1, Section 7, 9.1, 10.2, and Appendix X1.
1.6Â This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
Extracted, with permission, from ASTM D4052 – Standard Test Method for Density, Relative Density, and API Gravity of Liquids by Digital Density Meter, copyright ASTM International, 100 Barr Harbor Drive, West Conshohocken, PA 19428. A copy of the complete standard may be purchased from ASTM International, astm.org
Applications
Quick Contact
Contact Us
- +1 (989) 496-2301
- savant@savantgroup.com
- 4800 James Savage Rd, Midland, MI 48642
- Monday - Friday: 8AM - 5PM